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We develop a precise analysis of J. O’HARA’s knot functionals E(α), α ∈ [2, 3) that serve as self-repulsive
potentials on (knotted) closed curves. First we derive continuity of E(α) on injective and regular H2 curves
and then we establish Fréchet differentiability of E(α) and state several first variation formulae. Motivated by
ideas of Z.-X. HE in his work on the specific functional E(2), the so-called Möbius energy, we prove C∞-
smoothness of critical points of the appropriately rescaled functionals Ẽ(α) = lengthα−2E(α) by means of
fractional Sobolev spaces on a periodic interval and bilinear Fourier multipliers.

Copyright line will be provided by the publisher

Contents

Introduction 1
0.1 HE’s approach for the Möbius Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.2 Exposé of the present work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Fréchet differentiability 5
1.1 Continutity of E(α) on H2

ir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 First variation of E(α) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Continutity of δE(α) on H2

ir ×H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Derivative formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Smoothness of critical points 14
2.1 Derivation of the Euler-Lagrange equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 The Monster operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Bootstrapping argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A Arc-length reparametrization preservesH2 convergence 22
References 24

Introduction

Geometric knot theory is a recent subfield of knot theory which started from the investigation of knot energies that,
in contrast to classical knot theory [10, 17], measure geometric and analytic properties of a given knot rather than
its topological knot class. The development of this new area began in 1988 with an exposé of FUKUHARA [20]
dealing with polygons. Subsequently O’HARA [34] proposed the first knot energy defined on smooth curves.
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2 Ph. Reiter: Repulsive Knot Energies and Pseudodifferential Calculus

The general idea is to search for representatives possessing a particularly “nice” shape within a given knot
class. Besides requirements on its smoothness, such a knot is expected to look as little entangled as possible,
i. e. different strands of this representative are wide apart, having preferably large distances. In order to achieve
the latter, one needs to model self-avoidance phenomena, i. e. the energy blows up on sequences of embedded
curves converging to a curve with a self-intersection. In fact, this property essentially characterizes a knot energy.
By imposing self-avoidance one hopes not to run into the danger of leaving the ambient knot class, e. g. while
following a solution of a gradient flow. Unfortunately, small knots may pull tight in limiting processes which is
not prevented by this definition.

Besides the aim to distinguish between distinct knot classes, the investigation of knot energies may also have
its impact on the sciences, e. g. bio-chemistry and theoretical physics, whenever repulsive forces of fibres are
modeled. Possible applications are the deformation of a thin fibre charged with electrons lying in a viscous
liquid [20], the behaviour of protein foldings [32], or the motion of knotted DNA structures in electrophoresis
gels [12]. The evolution of these objects is obtained by studying the negative gradient flow associated to the
respective knot energy. On the other hand, attraction phenomena may also be modeled by a corresponding
positive gradient flow; see [2] for an example from mathematical biology discussing interaction between pairs of
filaments via cross-linkers.

In our terminology, a knot denotes a closed embedded curve γ ∈ AC(R/`Z,Rd), i. e. γ : R → Rd being
absolutely continuous and `-periodic. Additionally, we restrict to regular curves which satisfy γ̇ 6= 0 a. e. In
1992, O’HARA defined the family of (α, p)-knot functionals [35], α, p ∈ (0,∞),

Eα,p(γ) :=

∫∫
(R/`Z)2

(
1

|γ(s)− γ(t)|α
− 1

Dγ(s, t)α

)p
|γ̇(s)| |γ̇(t)|dsdt,

where L (γ) :=
∫ `

0
|γ̇(θ)|dθ is the length of γ and Dγ(s, t) := min

(
L (γ|[s,t]),L (γ) − L (γ|[s,t])

)
denotes

the (intrinsic) distance of γ(s) and γ(t) on the curve γ provided s ∈ [t − `
2 , t + `

2 ]. For general s, the func-
tion (s, t) 7→ Dγ(s, t) is extended periodically to (R/`Z)

2 which is homeomorphic to the torus. The factor
|γ̇(s)| |γ̇(t)| guarantees invariance under reparametrization. The functionals are knot energies (i. e. they are
bounded below and possess the self-avoidance property mentioned above) iff αp ≥ 2 and well-defined (i. e.
Eα,p 6≡ ∞) iff (α− 2)p < 1, see [36, Thm. 1.1] and [1, Proof of Cor. 3], which we will assume from now on. So
the functionals E(α) := Eα,1 together with the corresponding rescaled analoga Ẽ(α) := L α−2E(α) are relevant
for α ∈ [2, 3) only. The singularity in the integrand of Eα,p, occurring as |γ(s)− γ(t)| → 0, penalizes pairs
of points (γ(s), γ(t)) that have small Euclidean but large (intrinsic) distance on the curve. In this situation, the
contribution of the minuend |γ(s)− γ(t)|−α is rather high and cannot be absorbed by the subtrahendDγ(s, t)−α.
Curves with a self-intersection produce an unrecoverable singularity which leads to infinite energy.

The main results of this paper concern regularity properties ofE(α). The first goal is to rigorously establish the
Fréchet differentiability. In the following statements, Hα(R/2πZ,Rd) denotes the Sobolev space of (fractional)
order α ∈ [2, 3) consisting of closed curves in the d-dimensional Euclidean space, see (1.3).

Theorem 1.21 Let γ, h ∈ H2(R/2πZ,Rd) with γ being injective and |γ̇| > 0, α ∈ [2, 3). Then E(α) is
Fréchet differentiable at γ in direction of h. If γ is parametrized by arc-length, its first variation is given by

I(α)(γ, h) = lim
ε↘0

∫∫
Wε

(α− 2)

〈
γ̇(t), ḣ(t)

〉
|w|α

+ 2

〈
γ̇(t), ḣ(t)

〉
|4γ|α

− α 〈4γ,4h〉
|4γ|α+2

dw dt, (1.20)

otherwise, one has to use a reparametrization formula, cf. (1.25).
This statement is used to consider the Euler-Lagrange equation which finally reveals
Theorem 2.23 Let γ ∈ Hα(R/2πZ, Rd), α ∈ [2, 3), be an injective curve, parametrized by arc-length with

cube-integrable curvature |γ̈|. If γ is a critical point of the rescaled functional Ẽ(α) then it is C∞-smooth.
The most prominent case is E := E(2) = E2,1 which was extensively studied by FREEDMAN, HE, and

WANG, who coined the name Möbius Energy for E because of its invariance under Möbius transformations in

Note added in proof. In a forthcoming paper [9], we are able to close the gap between the initial regularity of finite-energy curves [5]
and the regularity requirement in Theorem 2.23, i. e. we show that critical points of Ẽ(α) in H(α+1)/2 parametrized by arc-length are
C∞-smooth.
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R3. In their seminal paper [19] they prove the existence of minimizers in prime knot classes and C1,1 regularity
of local minimizers in arbitrary knot classes (which is improved to C∞ regularity by Theorem 2.23 of this
text). Furthermore they also state a formula for the first variation. Unfortunately, they just claim δE(γ, h) =

limε↘0

∫∫
|s−t|≥ε

(
d

dτ

∣∣
τ=0

|γ̇τ (s)||γ̇τ (t)|
|γτ (s)−γτ (t)|

)
dsdt, where γτ := γ + τh, and check that d

dτ

∣∣
τ=0

|γ̇τ (s)||γ̇τ (t)|
|γτ (s)−γτ (t)| =

O(1) as |s− t| → 0 which does not prove their assertion. Their conclusion that E is Fréchet differentiable is
incorrect, too; a proof for this statement is presented in this text. Further details on O’HARA’s energy functionals
may be found in [1, 8, 35, 37]. In the more complicated situation of higher-dimensional submanifolds hardly
anything is known analytically, see [4, 32].

A couple of years after the joint paper [19], HE published his inspiring investigation on the Euler-Lagrange
equation and the heat flow associated to the Möbius Energy [30]. As to smoothness of critical points, he treats the
special case α = 2 of Theorem 2.23 above. Unfortunately, HE’s arguments fail to work correctly which will be
commented on in detail below. However, we will furnish a rigorous proof in the more general situation α ∈ [2, 3)
using some of HE’s brilliant ideas. For a rigorous analysis of the gradient flow we refer to BLATT [6, 7].

Yet another famous example of a knot energy is the reciprocal of thickness ∆[·] which can be characterized
by means of the global radius of curvature %G defined by GONZALEZ and MADDOCKS [24]. This leads to
the concept of ideal knots. Existence theory is discussed in [13, 22, 23, 25]. Regularity theory regarding ideal
knots turns out to be rather involved, see [11, 42, 43]. In fact, an explicit analytical characterization of the
shape of a (non-trivial) ideal knot has not been found yet, so the state of the art is numerical visualization,
cf. [3, 14, 15, 21, 26, 44]. There are many generalizations of this concept, e. g. higher-dimensional analoga,
see [45, 46, 47, 48, 49, 50]. We also refer to [37] for a detailed outline on several knot energies and the respective
properties.

Before describing the structure of the present paper let us outline HE’s regularity approach [30] for the Möbius
energy E(2), which motivated our investigations on the general potentials E(α).

0.1 HE’s approach for the Möbius Energy

Derivation of the derivative. HE’s ingenious idea is to introduce a quadratic functional Q, appearing as Q(2)

in the present text, which turns out to be a “linearization” of the first variation of E. Without a further comment,
HE cites the existence of the Gâteaux derivative of E just from [19]. Moreover, HE does neither prove nor cite a
proof for the “elementary” fact that arc-length reparametrization preserves H2 convergence.

The reasoning for the assertion thatE admits Gâteaux derivatives up to order k+1 when restricted toHk+2 for
all k ∈ N is questionable [30, Lemma 4.5]. HE does not explain why repeated interchanging of differentiation,
integration and a limit process limτ↘0 limε↘0

∫∫
|s−t|≥ε = limε↘0

∫∫
|s−t|≥ε limτ↘0 should be a valid operation.

On the other hand, he provides a nice geometric argument for the fact that δE(γ, h) = 0 for variational fields h
tangent to γ [30, Lemma 4.6].

Critical points and the bootstrapping. HE carries out a clever transformation of the weak Euler-Lagrange
equation of E. However, suitable background for the underlying Sobolev theory is not provided, so HE can
neither properly initialize nor carry out the bootstrapping. This accumulates at the commutator estimate [30,
Lemma 5.2]. HE claims

∥∥Pf⊥∆1/2g −∆1/2Pf⊥g
∥∥
Hσ
≤ Cσ ‖f‖H1+σ ‖g‖H1/2+σ for σ > 0, where Pf⊥h :=

h − 〈h, f〉Rd f . The norm ‖g‖H1/2+σ is not sufficient in general. For small σ ≥ 0 one needs at least
‖g‖H1/2+σ+ε , ε > 0, as Hs ↪→ L∞ for s > 1

2 only. However, in the first step of the bootstrapping process,
HE uses the estimate for σ = 0 and ε = 0 in order to show ∆−1/4Nγ γ̈ ∈

(
L2
)∗

. For a proof of the commu-
tator estimate, he refers to KATO and PONCE [31]. It is not obvious how to carry over their result. They treat
the situation

∥∥∆σ/2(fg)− f∆σ/2g
∥∥
L2 (with Id−∆ instead of ∆) while HE essentially needs an estimate for∥∥∆(σ+1)/2(fg)−∆σ/2

(
f∆1/2g

)∥∥
L2 together with a statement on the product of Sobolev functions.

Moreover, due to the lack of a suitable theory, HE cannot provide results on higher regularity of the “monster”
operator M which he shows to belong to L1 only. This adds to the fact that the bootstrapping does not reach
beyond the first step.
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4 Ph. Reiter: Repulsive Knot Energies and Pseudodifferential Calculus

0.2 Exposé of the present work

Section 1. Fréchet differentiability. We start with a brief introduction concerning Fourier theory and frac-
tional Sobolev spaces Hs. Assuming arc-length parametrization, we begin with the investigation of E(α),
whose “linearization” is given by the bilinear form Q(α), see (1.6). It turns out that E(α)(γ) may be written
as α

2Q
(α)(γ, γ) + “lower order terms”, cf. (1.8). This bilinear form defined on Hσ × Hα+1−σ is discussed in

Proposition 1.3.
The functional Q(α) is quite remarkable as it admits to characterize the Sobolev spaces Hs, s ∈ (1, 2),

without the aid of Fourier series. More precisely, f ∈ H1+β ⇐⇒ Q(1+2β)(f, f) < ∞ for β ∈ (0, 1),
and f 7→

√
Q(1+2β)(f, f) is a seminorm on H1+β . The corresponding functional for H0+β is given by f 7→∫∫

(R/2πZ)2
|f(s)−f(t)|2

|s−t|1+2β dsdt. Similar norms for Hk+β , k ∈ N, β ∈ (0, 1), may be defined inductively, see HE’s
note [29] for the Rn case which can be transferred to the periodic setting using the technique from the proof of
Proposition 1.3. A similar characterization that does not involve Fourier series is furnished by seminorms using
difference operators, see [28, Exerc. 6.3.9] for the situation in Rn.

The “lower order terms” mentioned above are treated in Corollary 1.5 using ideas from [30, Lemma 4.3]. We
finally obtain continuity of E(α) on injective embedded H2 curves with arbitrary parametrization (assuming that
the first derivative never vanishes) by Theorem A.1 from the appendix.

It is rather simple to formally differentiate the integrand of E(α)(γ + τh) outside an ε-neighborhood of the
diagonal s = t with respect to τ at τ = 0. But it is not clear at all why interchanging of differentiation with
respect to τ , integration, and a limit process ε↘ 0 should be an admissible operation. The main problem consists
in the fact that, since the integrand of E(α)(γ + τh) is singular, its derivative is even more singular and fails to
be L1(R/2πZ× (−π, π)). So we may not immediately apply LEBESGUE’s theorem on dominated convergence.
At least the principal value exists and is finite.

The approximate functionalE(α)
ε , which is obtained fromE(α) by removing the “singular strip” {|s− t| < ε}

from the integration domain, can be differentiated just via LEBESGUE’s theorem. Its first variation I(α)
ε turns out

to be a continuous mapping τ 7→ I
(α)
ε (γ+τh, h) for |τ | � 1 and ε > 0. If α > 2 we also have to consider the first

variation ofDγ , cf. Lemma 1.13. Interestingly, the functional I(2)
ε does not involveDγ nor its derivative which is

compatible with [19, Lemma 6.1]. The technical part is now to show that τ 7→ limε↘0 I
(α)
ε (γ + τh, h) is in fact

continuous for |τ | � 1, see Lemma 1.14. Finally, Lemma 1.15 reveals the existence of the first variation I(α).
Using ideas from [30, Lemma 4.2] we see that I(α) indeed continuously extends to γ, h ∈ H2 where γ is at

first parametrized by arc-length, see Lemma 1.17, and then transfer this result to arbitrary regular H2 curves via
reparametrization to arc-length (1.25), cf. Corollary 1.16. Approximating γ, h ∈ H2 by smooth functions and
using Lemma 1.15, we finally obtain Fréchet differentiability in Theorem 1.21.

In the last paragraph of the first section, we state some formulae for the first variation that no longer involve
derivatives of Dγ , see (1.26), (1.27). The first derivative of E(α) given in (1.28) admits a negative gradient flow,
see Remark 1.25.

Section 2. Smoothness of critical points. In the present work we study bilinear Fourier multipliers in order to
investigate the regularity of products f · g and commutators [J, f ]g := J(fg)− f(Jg) for given Hs functions f
and g, where J denotes the “standard” differential operator on Hs. Provided s > 1

2 , the multiplier Mµ(f, g)
defined in (2.1) belongs to Hs. In spite of the lack of a “Leibniz rule” for J and its (non-even) powers, we obtain
at least an L2 estimate for Js(fg) in terms of the L2 norms of Jsf and Jsg (provided s > 1

2 ). A more general
statement on multiplication in fractional Sobolev spaces can be found in [38, Thm. 9.5]. We also obtain weaker
results for s ≤ 1

2 . Note that the symbol µk,l ofMµ is uniformly bounded and does not depend on the variable t.

The contrary situation of non-constant symbols (µk,l)k,l∈Z ∈ (Hs(R/2πZ))
Z2

becomes rather involved, see e. g.
[16, Thm. 12 (p. 55), Prop. 2 (p. 154)] or [33, Chap. 13], that treat the situation in Rn.

By the scaling property, we may expect critical points for the rescaled functionals Ẽ(α) only or, equivalently,
have to impose a side condition on the length of the curve. As in [30], we have to restrict to test functions in the
orthogonal complement of γ̇ in order to derive a weak Euler-Lagrange equation (2.11) that allows to separate the
highest-order terms. The tedious “remainder term” M (α) which essentially forms a product of derivatives of γ
with shifted arguments is thoroughly treated in Lemmata 2.20 and 2.21, filling one of HE’s major gaps. The proof
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of Theorem 2.23 finally contains the bootstrapping argument. Due to the limited regularity, one can only proceed
in steps Hs ⇒ Hs+ 1

2−ε at the beginning.
It is not clear whether similar properties apply for the energies Eα,p where p 6= 1. In this case we do not

obtain an easy decomposition of Eα,p as in (1.8). The computation (1.21) by which we dispose the derivative of

Dγ does not hold, but we face another factor
(

1
|γ(s)−γ(t)|α −

1
Dγ(s,t)α

)p−1

in the integrand.
For more detailled proofs of the statements in this text we refer to [40].

1 Fréchet differentiability

We briefly recall some basics of Fourier series. For the general theory of Fourier analysis we refer to, e. g., [27,
Ch. 3] and [41, 4.26], details regarding Sobolev spaces may be found in [18, Ch. 5], [28, Sect. 6.2], and [51,
Sect. 4.1 – 4.3]. Let d ∈ N, k ∈ Z, m ∈ N, and s ∈ R.

We start with the definition of a rescaled L2 scalar product

〈f, g〉L2 := −
∫ 2π

0

〈f(t), g(t)〉Rd dt := 1
2π

∫ 2π

0

〈f(t), g(t)〉Rd dt = 1
2π (f, g)L2

which induces the norm 6 ‖f‖L2 :=
√
〈f, f〉L2 = 1√

2π
‖f‖L2 .

Defining the L2 basis functions φk : R/2πZ → C, t 7→ eikt, k ∈ Z, any L2 function f : (0, 2π) → Rd may
be written in terms of its Fourier coefficients f̂k := −

∫ 2π

0
f(t)φ−k(t) dt via f =

∑
k∈Z f̂kφk, which converges

in L2. Vice versa, any `2 sequence
(
f̂k

)
k∈Z
⊂ Cd satisfying f̂k = f̂−k for all k ∈ Z defines a function in

L2(R/2πZ,Rd) by
∑
k∈Z f̂kφk. This is precisely the isometry between the two Hilbert spaces L2 and `2 arising

from the RIESZ-FISCHER theorem.
By PARSEVAL’s theorem, for all f, g ∈ L2(R/2πZ,Rd),

〈f, g〉L2 =

〈(
f̂l

)
l∈Z

, (ĝl′)l′∈Z

〉
`2

:=
∑
k∈Z

〈
f̂k, ĝk

〉
Cd
. (1.1)

These facts are used for the following

Lemma 1.1 Let f ∈ Hm(R/2πZ,Rd), m ∈ N. Then the sequence
(
f̂k

)
k∈Z

⊂ Cd defined by f̂k :=

−
∫ 2π

0
f(t)φ−k(t) dt satisfies

6 ‖f‖Hm :=

√∑
k∈Z

(1 + k2)m
∣∣∣f̂k∣∣∣2 <∞. (1.2)

On the other hand, any sequence
(
f̂k

)
k∈Z

satisfying f̂k = f̂−k and (1.2) defines a function
∑
k∈Z f̂kφk ∈

Hm(R/2πZ,Rd). The norms ‖·‖Hm and 6 ‖·‖Hm are equivalent.
By this property, one can define fractional order Sobolev spaces

Hs(R/2πZ,Rd) :=

{
f ∈ L2(R/2πZ,Rd)

∣∣∣∣ 6 ‖f‖Hs :=
√
〈f, f〉Hs <∞

}
, s ≥ 0, (1.3)

which are Hilbert spaces equipped with the scalar product

〈f, g〉Hs :=
∑
k∈Z

(1 + k2)s
〈
f̂k, ĝk

〉
Cd
.

The definition of Hs induces an isometry Hs(R/2πZ,Rd)→ Hs−σ(R/2πZ,Rd), s ≥ 0, σ ∈ (−∞, s],

Jσ : f 7→
∑
k∈Z

(1 + k2)σ/2f̂kφk,
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6 Ph. Reiter: Repulsive Knot Energies and Pseudodifferential Calculus

so f ∈ Hs ⇐⇒ Jσf ∈ Hs−σ ⇐⇒ Jsf ∈ L2. Note that J2 = id− d2

dt2 . Moreover, given s ≥ 0, σ, τ ≥ −s,
ϕ ∈ Hs+σ ∩Hs+(σ+τ)/2, ψ ∈ Hs+τ ∩Hs+(σ+τ)/2, we obtain 〈Jσϕ, Jτψ〉Hs = 〈ϕ,ψ〉Hs+(σ+τ)/2 , which can
be used in many ways, e. g. 〈Jσf, g〉L2 = 〈f, Jσg〉L2 = 〈f, g〉Hσ/2 , σ ≥ 0.

We denote by Cmir and Hs
ir (m ∈ N, s ≥ 2) functions belonging to Cm or Hs respectively which are addition-

ally injective and regular. In our situation injectivity is equivalent to embeddedness of the curves and regularity
means that the first derivative never vanishes, i. e. |γ̇(·)| ≥ c > 0. By Cmia and Hs

ia (m ∈ N, s ≥ 2) we will
denote curves that are also parametrized by arc-length, i. e. |γ̇(·)| ≡ 1.

1.1 Continutity of E(α) onH2
ir

In this section we prove the (sequential) continuity of E(α) on H2
ia(R/2πZ,Rd), i. e. we restrict ourselves to

curves parametrized by arc-length. To this end we will, following [30, Lemma 4.4], decompose E(α)(γ) for a
curve γ ∈ H2

ia(R/2πZ,Rd) introducing and investigating three important functionals, Q(α), X , and Ω(α). Using
a reparametrization theorem, to which the next section is devoted, we may transfer this result to the larger set
H2

ir(R/2πZ,Rd).
Let Wε := [0, 2π]× ([−π,−ε] ∪ [ε, π]) for ε ∈ [0, π] and define for any f, g, γ ∈ H2(R/2πZ,Rd), (t, w) ∈

W0, ε ∈ (0, π],

Q(α)
ε (f, g) :=

∫∫
Wε

(〈
ḟ(t), ġ(t)

〉
Rd
− 〈f(t+ w)− f(t), g(t+ w)− g(t)〉

w2

)
dw dt

|w|α
,

Xγ(t, w) := 2

∫ 1

0

(1− u) 〈γ̇(t+ uw)− γ̇(t), γ̈(t+ uw)〉du− w
∣∣∣∣∫ 1

0

(1− u)γ̈(t+ uw) du

∣∣∣∣2 ,
(1.4)

Ω(α)
γ (t, w) := 1

4α(α+ 2)

∫ 1

0

1− µ
(1− µwXγ(t, w))α/2+2

dµ. (1.5)

Note that Ω
(2)
γ (t, w) = (1− wXγ(t, w))

−1. Moreover, if existing,

Q(α)(f, g) := lim
ε↘0

Q(α)
ε (f, g). (1.6)

Finally, we define the approximative functionals

E(α)
ε (γ) :=

∫∫
Wε

(
1

|γ(t+ w)− γ(t)|α
− 1

Dγ(t, t+ w)α

)
|γ̇(t+ w)| |γ̇(t)|︸ ︷︷ ︸

=: f (α)(γ; t, w)

dw dt (1.7)

which of course satisfy E(α) = limε↘0E
(α)
ε . By |γ(t+ w)− γ(t)|2 (1.4)

= w2 (1− wXγ(t, w)), see [30, (4.8)],
we obtain

Q(α)
ε (γ, γ) =

∫∫
Wε

w |w|−αXγ(t, w) dw dt for γ ∈ H2
ia(R/2πZ,Rd).

Applying the Taylor formula with integral remainder for x 7→ (1 + x)−α/2, x > −1, essentially gives as in [30,
Lemma 4.4 (ii)]

Proposition 1.2 For any γ ∈ H2
ia(R/2πZ,Rd) we obtain

E(α)
ε (γ) = α

2Q
(α)
ε (γ, γ) +

∫∫
Wε

Ω(α)
γ (t, w) |w|2−αXγ(t, w)2 dw dt. (1.8)

In order to prove continuity we have to investigate the functionals involved in (1.8). We start with the first
term.
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Proposition 1.3 (i) For each σ ∈ [0, α+1], the functional Q(α) is bilinear and bounded, hence continuous,
on

(Hσ ×Hα+1−σ)(R/2πZ,Rd).

(ii) There is a linear and bounded (pseudodifferential) operator (defined via a Fourier multiplier)

L(α) : Hs+2(R/2πZ,Rd)→ Hs(R/2πZ,Rd) for each s ≥ 0

and a constant a(α) ∈ R such that, for f ∈ H2(R/2πZ,Rd), g ∈ Hα−1(R/2πZ,Rd),

Q(α)(f, g) = a(α)
〈
J2f, Jα−1g

〉
L2 +

〈
L(α)f, g

〉
L2
. (1.9)

This proposition generalizes [30, Lemma 2.3] to α ∈ [2, 3).

P r o o f. Linearity in both arguments is obvious. Since any L2 function is uniquely determined by its Fourier
series, we obtain for f ∈ Hσ , g ∈ Hα+1−σ , σ ∈ [0, α+ 1],

Q(α)(f, g) = 4π

∫ π

0

∑
k∈Z

〈
f̂k, ĝk

〉
Cd

z(kw)

w2+α
dw, (1.10)

where z(t) := t2 − 2 + eit + e−it = t2 − 2 + 2 cos t, which turns out to be even and monotone increasing on
{t ≥ 0}, for ż(t) = 2(t− sin t) ≥ 0. Now z(0) = 0 implies that z is non-negative on R, so∣∣∣Q(α)(f, g)

∣∣∣ ≤∑
k∈Z

qk

∣∣∣f̂k∣∣∣ |ĝk| , where qk := 4π

∫ π

0

z(kw)

w2+α
dw. (1.11)

Using integration by parts we can decompose qk = a(α) |k|α+1
+b

(α)
|k| k

2 +c
(α)
|k| , where, for k ≥ 0, the coefficients

a(α) :=
8πλ

(α)
∞

α(α+ 1)(α− 1)
, λ(α)

∞ = lim
k→∞

λ
(α)
k , (1.12)

b
(α)
k :=

4π

α+ 1

[
2

α(α− 1)

((
λ

(α)
k − λ(α)

∞

)
kα−1

)
− π1−α

(
1 +

2

α
+ 2

1− (−1)k

α(α− 1)

)]
,

c
(α)
k :=

8

α+ 1
· 1− (−1)k

πα

are bounded in k due to Lemma 1.4 which defines λ(α)
k =

∫ kπ
0

sin t
tα−1 dt. By (1+k2)s/2−|k|s = O

(
(1 + k2)s/2−1

)
as k →∞ for s > 0, k ∈ Z we may also write

qk = a(α)(1 + k2)(α+1)/2 +O(1 + k2) as k →∞, (1.13)

where the Landau symbol depends on α. By (1.11), (1.13) and SCHWARZ’s inequality we arrive at∣∣∣Q(α)(f, g)
∣∣∣ ≤∑

k∈Z
O
(

(1 + k2)(α+1)/2
) ∣∣∣f̂k∣∣∣ |ĝk| ≤ Cα 6 ‖f‖Hσ 6 ‖g‖Hα+1−σ

with some constant Cα depending only on α. This proves (i). In order to show (ii) we first note, that we just have
found a majorant for (1.10) which leads to Q(α)(f, g) =

∑
k∈Z qk

〈
f̂k, ĝk

〉
Cd

. Choosing σ := 2, we deduce

(1.9) from (1.13) by defining L(α)f :=
∑
k∈Z

(
a(α)

(
|k|α+1 − (1 + k2)(α+1)/2

)
+ b

(α)
|k| k

2 + c
(α)
|k|

)
f̂kφk =∑

k∈ZO(1)Ĵ2fkφk.

The following statements are proved by elementary means.
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Lemma 1.4 For k ∈ N ∪ {0} we define

λ
(α)
k :=

∫ kπ

0

sin t

tα−1
dt.

These values are well-defined and converge to λ(α)
∞ = limk→∞ λ

(α)
k <∞.

Moreover,
(
λ

(α)
∞ − λ(α)

k

)
kα−1 is bounded in k.

The preceding results treat the first term in (1.8). Now we pass to the second. By [30, Lemma 4.4], the
functional γ 7→ Xγ is a continuous mapping H2(R/2πZ,Rd) → L∞(W0) satisfying ‖Xγ‖L∞(W0) ≤ 3 ‖γ̈‖2L2 .
Furthermore, if γ ∈ H2

ia, there is some βγ > 0 continuously depending on γ such that 0 ≤ wXγ(t, w) ≤ 1− βγ .
We conclude

Corollary 1.5 The functional γ 7→ Ω
(α)
γ is a continuous mapping

H2
ia(R/2πZ,Rd)→ L∞(W0).

Now we collect all the facts proved in this section.

Theorem 1.6 (E(α) ∈ C0(H2
ir )) The functional E(α) is continuous on H2

ir(R/2πZ,Rd).

P r o o f. The continuity on H2
ia(R/2πZ,Rd) follows by Propositions 1.2, 1.3, and Corollary 1.5. Note that∫ π

−π |w|
2−α

dw < ∞. Let (γn)n∈N be a sequence of H2
ir functions converging to some γ0 ∈ H2

ir with respect
to the H2 norm. Using the continuity of the rescaling and reparametrizing operator ˜ from Theorem A.1 and
recalling Ẽ(α) ◦ ˜ = Ẽ(α), we arrive at Ẽ(α)(γn) = Ẽ(α)(γ̃n)

n→∞−−−−→ Ẽ(α)(γ̃0) = Ẽ(α)(γ0). By the continuity
of the length functional and the fact that (L (γn))n∈N∪{0} is bounded below by some positive constant, we
conclude

E(α)(γn) = L (γn)2−αẼ(α)(γn)
n→∞−−−−→ L (γ0)2−αẼ(α)(γ0) = E(α)(γ0).

1.2 First variation of E(α)

In order to shorten notation, we will use the notation4• := •(t+ w)− •(t) from now on throughout this text.

Lemma 1.7 (H2
ir is open in H2) For any γ ∈ H2

ir(R/2πZ,Rd) there is some δγ > 0 such that Bδγ (γ) ⊂
H2

ir . More precisely, there is is some δ′γ > 0, such that γ + h ∈ H2
ir for all h ∈ H2(R/2πZ,Rd) satisfying∥∥∥ḣ∥∥∥

L∞
≤ δ′γ .

P r o o f. The regularity of γ yields c := minR/2πZ |γ̇| > 0. Moreover, ‖γ̈‖L2 > 0, for γ is closed. Let

ε :=
(

1
4c ‖γ̈‖

−1
L2

)2

> 0, % := min(t̄,w̄)∈Wε
|γ(t̄+ w̄)− γ(t̄)| > 0 by injectivity of γ (or % := 1 if ε > π), and

δ′γ := 1
2 min

(
c, %π

)
> 0. Let h ∈ H2(R/2πZ,Rd) satisfy

∥∥∥ḣ∥∥∥
L∞
≤ δ′γ . If |w| ≤ ε, we obtain |4(γ + h)| ≥(

c−
√
ε ‖γ̈‖L2 − δ′γ

)
|w| ≥ c

4 |w| > 0 if w 6= 0. On the other hand, from |w| ≥ ε we deduce |4(γ + h)| ≥
% − π

∥∥∥ḣ∥∥∥
L∞
≥ 1

2% > 0. This proves injectivity. Regularity is due to |(γ + h)˙| ≥ c −
∥∥∥ḣ∥∥∥

L∞
≥ 1

2c > 0. By

embedding inequalities we obtain δγ from δ′γ .

Using the notation from the preceding proof, we define the variable

δ0 = δ0

(
γ,
∥∥∥ḣ∥∥∥

L∞

)
:=

δ′γ∥∥∥ḣ∥∥∥
L∞

=
min

(
c, %π

)
2
∥∥∥ḣ∥∥∥

L∞

> 0 if h 6≡ const or δ0 := 1 otherwise,

which will be used throughout this paragraph.
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Corollary 1.8 For any γ ∈ H2
ir(R/2πZ,Rd), h ∈ H2(R/2πZ,Rd), τ ∈ [−δ0, δ0] the curve γτ := γ + τh

still belongs to H2
ir .

Remark 1.9 (Injectivity and isotopy) For any γ ∈ C1
ir , there is an open C1-neighbourhood which entirely

consists of curves being ambient isotopic to γ and hence injective (cf. e. g. [39], where an explicit isotopy is
constructed).

Lemma 1.10 For any γ ∈ H2
ir(R/2πZ,Rd), h ∈ H2(R/2πZ,Rd), ε ∈ (0, π), and (t, w) ∈Wε, the mapping

τ 7→ f (α)(γτ ; t, w) belongs to C0,1([−δ0, δ0]). Therefore, it is a. e. differentiable, and its derivative amounts to
d

dτ f
(α)(γτ ; t, w) = g(α)(γτ , h; t, w), where

g(α)(γ, h; t, w) := αg
(α)
1 + g

(α)
2 + g

(α)
2• ,

g
(α)
1 (γ, h; t, w) :=

(
d

dλ

∣∣
λ=0

Dγλ(t, t+ w)

Dγ(t, t+ w)α+1
−
〈4γ,4h〉Rd
|4γ|α+2

)
|γ̇(t+ w)| |γ̇(t)| ,

g
(α)
2 (γ, h; t, w) :=

(
1

|4γ|α
− 1

Dγ(t, t+ w)α

)〈
γ̇(t)

|γ̇(t)|2
, ḣ(t)

〉
Rd
|γ̇(t+ w)| |γ̇(t)| ,

g
(α)
2• (γ, h; t, w) :=

(
1

|4γ|α
− 1

Dγ(t, t+ w)α

)〈
γ̇(t+w)

|γ̇(t+w)|2 , ḣ(t+ w)
〉
Rd
|γ̇(t+ w)| |γ̇(t)| .

P r o o f. By the proof of Lemma 1.7, the mapping τ 7→ |4γτ | is uniformly bounded below on [−δ0, δ0]×Wε,
so τ 7→ |4γτ |−α belongs to C1([−δ0, δ0]). By

|γ̇τ | ≥ c− δ0
∥∥∥ḣ∥∥∥

L∞
≥ 1

2c, for δ0 ≤
c

2
∥∥∥ḣ∥∥∥

L∞

, (1.14)

also the mappings τ 7→ |γ̇τ (t)| and τ 7→ |γ̇τ (t+ w)| are C1([−δ0, δ0]). Since τ 7→ L
(
γτ |[t,t+w]

)
=

|w|
∫ 1

0
|γ̇τ (t+ ϑw)|dϑ is C1([−δ0, δ0]) with derivative τ 7→

∫ 1

0

〈
γ̇(t+ϑw)
|γ̇(t+ϑw)| , ḣ(t+ ϑw)

〉
dϑ, we deduce that

τ 7→ Dγτ (t, t + w) is C0,1([−δ0, δ0]) and bounded below on Wε (since Dγ(t, t + w) ≥ |4γ|). So, its (−α)-th
power is also Lipschitz (since |w| ≥ ε > 0).

Now the claim follows by the product rule for absolutely continuous functions.

The preceding proof also shows g(α)(γ•, h; ·, ·) ∈ L∞([−δ0, δ0] × Wε) for ε ∈ (0, π), which implies by
LEBESGUE’s theorem

Corollary 1.11 For any γ ∈ H2
ir(R/2πZ,Rd), h ∈ H2(R/2πZ,Rd), ε ∈ (0, π), and (t, w) ∈ Wε, both the

mappings

τ 7→ I(α)
ε (γτ , h) :=

∫∫
Wε

g(α)(γτ , h; t, w) dw dt and τ 7→
∫∫

Wε

∣∣∣g(α)(γτ , h; t, w)
∣∣∣dw dt

belong to C0([−δ0, δ0]).

To prepare the computation of the derivative of f (α) on Wε, we first study Dγτ near w = 0.

Remark 1.12 (Differentiability of Dγτ ) For each γ, h ∈ C1, |γ̇| > 0, there is some δ̄ > 0, such that, for
any (τ̄ ; t̄, w) ∈ [−δ̄, δ̄]×W0, the mapping τ 7→ Dγτ (t̄, t̄+ w) is differentiable at τ = τ̄ up to at most one point
w = w̄(τ̄ ; t̄) ∈ (−π, π). (Note that τ 7→ Dγτ (t̄, t̄+w)|w=0 ≡ 0 is differentiable.) This relies on the fact that Dγ

is defined as the minimum of two C1([−δ̄, δ̄]×W0) functions, one of them strictly monotonically increasing in
w and the other one monotonically decreasing in w.

In the subsequent Lemma we prove that w̄(τ̄ ; t̄) is uniformly bounded away fromw = 0 such that (τ 7→ Dγτ ) ∈
C1 in some neighbourhood of (τ ; t, w) ∈ {0} × R/2πZ× {0}.
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Lemma 1.13 For any γ, h ∈ C1(R/2πZ,Rd), |γ̇| ≥ c > 0 we define δ̄ = δ̄(γ,
∥∥∥ḣ∥∥∥

L∞
) := 1

2c
∥∥∥ḣ∥∥∥−1

L∞
> 0

if h 6≡ const or δ̄ := 1 otherwise, and ε̄ = ε̄(γ) := π
(

2
c ‖γ̇‖L∞ + 1

)−1
. Then, for all (τ ; t, w) ∈ [−δ̄, δ̄] ×

R/2πZ× [−ε̄, ε̄],

Dγτ (t, t+ w)
!
= L

(
γτ |[t,t+w]

)
=

∣∣∣∣∫ t+w

t

|γ̇τ (θ)|dθ
∣∣∣∣ = |w|

∫ 1

0

|γ̇τ (t+ ϑw)|dϑ. (1.15)

Clearly, for each pair (t, w) ∈ R/2πZ×[−ε̄, ε̄], the mapping τ 7→ Dγτ (t, t+w) isC1([−δ̄, δ̄]), and its derivative
amounts to

d
dτDγτ (t, t+ w) = |w|

∫ 1

0

〈
γ̇τ (t+ ϑw)

|γ̇τ (t+ ϑw)|
, ḣ(t+ ϑw)

〉
Rd

dϑ. (1.16)

P r o o f. Equation (1.15) can be directly derived by verifying L
(
γτ |[t,t+w]

)
≤ L (γτ ) − L

(
γτ |[t,t+w]

)
for (τ ; t, w) ∈ [−δ̄, δ̄] × R/2πZ × [−ε̄, ε̄]. Since τ 7→ |γ̇τ (t+ ϑw)| is C1([−δ̄, δ̄]) by (1.14) with deriva-
tive τ 7→

〈
γ̇(t+ϑw)
|γ̇(t+ϑw)| , ḣ(t+ ϑw)

〉
, the difference quotient 1

λ (|γ̇τ+λ(t+ ϑw)| − |γ̇τ (t+ ϑw)|) is bounded by

supτ∈[−δ̄,δ̄]
d

dτ |γ̇τ (t+ ϑw)| ≤
∥∥∥ḣ∥∥∥

L∞
due to the mean value theorem. Using LEBESGUE’s theorem, we may

interchange differentiation and integration. Since the right-hand side of (1.16) continuously depends on τ (again
by LEBESGUE’s theorem), the second claim follows.

The proof of the following lemma is straightforward but quite long, so it will be omitted. The essential
technique is applying suitable Taylor expansions of the quantities appearing in the integrand of I(α). The details
can be found in [40, pp. 42 – 48].

Lemma 1.14 Let γ ∈ C3
ir(R/2πZ,Rd), h ∈ C3(R/2πZ,Rd). Then the mapping

τ 7→ I(α)(γτ , h) := lim
ε↘0

I(α)
ε (γτ , h)

is well-defined and continuous on [−δ0, δ0]. Moreover, there is some ε1 = ε1(γ, h) > 0 such that

sup

{∣∣∣I(α)
ε (γτ , h)

∣∣∣ ∣∣∣∣ ε ∈ (0, ε1], τ ∈ [−δ0, δ0]

}
<∞.

Lemma 1.15 Let γ ∈ C3
ir(R/2πZ,Rd), h ∈ C3(R/2πZ,Rd). Then E(α) is differentiable at γ in direction h.

Its first variation amounts to δE(α)(γ, h) = I(α)(γ, h).

P r o o f. For ε ∈ (0, π), we deduce f(α)(γτ ;t,w)−f(α)(γ;t,w)
τ =

∫ 1

0
g(α)(γ + ϑτh, h; t, w) dϑ on (τ ; t, w) ∈

[−δ0, δ0]×Wε from Lemma 1.10, where we also used the linearity of g(α)(γτ , ·; t, w). Moreover, Corollary 1.11
permits to use FUBINI’s theorem, so∫∫

Wε
f (α)(γτ ; t, w) dw dt−

∫∫
Wε

f (α)(γ; t, w) dw dt

τ

=

∫∫
Wε

f (α)(γτ ; t, w)− f (α)(γ; t, w)

τ
dw dt =

∫∫
Wε

∫ 1

0

g(α)(γ + ϑτh, h; t, w) dϑ dw dt

=

∫ 1

0

∫∫
Wε

g(α)(γ + ϑτh, h; t, w) dw dtdϑ =

∫ 1

0

I(α)
ε (γ + ϑτh, h) dϑ.

Applying LEBESGUE’s theorem on monotone convergence (recall f (α) ≥ 0) to the left-hand side and LEBESGUE’s
theorem on dominated convergence to the right-hand side, we may pass to the limit ε↘ 0 arriving at

E(α)(γτ )−E(α)(γ)
τ =

∫ 1

0
I(α)(γ + ϑτh, h) dϑ.

By Lemma 1.14, the right-hand side converges as τ → 0.
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The identity g(α)(%γ, %h; t, w) = %2−αg(α)(γ, h; t, w) for % > 0, a. e. (t, w) ∈Wε gives positive homogeneity
of I(α)

ε which transfers this property to I(α). By the same argument one obtains invariance under orthogonal
transformations and dilatations. On the other hand, applying the transformation rule (A.1) changes the integration
domain Wε which leads to some difficulties. Using the preceding lemma and recalling the invariance under
parametrization of E(α), we just obtain an easy proof for invariance under parametrization.

Corollary 1.16 The functional I(α) is parametrization (and orientation) invariant on C3
ir(R/2πZ,Rd) ×

C3(R/2πZ,Rd), so it is completely determined by its values on C3
ia × C3. More precisely, let (γ, h) ∈ C3

ir × C3

and Ψγ as in Proposition A.6. Then

(γ̃, h̃) :=
2π

L (γ)
(γ, h) ◦ (Ψγ)

−1 ∈ C3
ia × C3 (1.17)

and

I(α)(γ, h) =

(
2π

L (γ)

)α−2

I(α)(γ̃, h̃). (1.18)

1.3 Continutity of δE(α) onH2
ir ×H2

For this section we partially use arguments from [30, Lemma 4.1 – 4.3]. We start by deriving a slightly simpler
formula for I(α)

ε on H2
ir ×H2. Since

∫∫
Wε

g
(α)
2• (γ, h; ·, ·) =

∫∫
Wε

g
(α)
2 (γ, h; ·, ·), we arrive at

I(α)
ε (γ, h) = α

∫∫
Wε

(
d

dλ

∣∣
λ=0

Dγλ(t, t+ w)

Dγ(t, t+ w)α+1
−
〈4γ,4h〉Rd
|4γ|α+2

)
|γ̇(t+ w)| |γ̇(t)|dw dt

+2

∫∫
Wε

(
1

|4γ|α
− 1

Dγ(t, t+ w)α

)〈
γ̇(t)

|γ̇(t)|2
, ḣ(t)

〉
Rd
|γ̇(t+ w)| |γ̇(t)|dw dt. (1.19)

Restricting to curves parametrized by arc-length, we even obtain a shorter formula which no longer involves
the functional Dγ or its derivative.

Lemma 1.17 The functional I(α), which was defined as limε↘0 I
(α)
ε onC3

ir×C3 in Lemma 1.14, is continuous
on
(
H2

ia ×H2
)

(R/2πZ,Rd), where

I(α)(γ, h) = lim
ε↘0

∫∫
Wε

(α− 2)

〈
γ̇(t), ḣ(t)

〉
|w|α

+ 2

〈
γ̇(t), ḣ(t)

〉
|4γ|α

− α 〈4γ,4h〉
|4γ|α+2

dw dt. (1.20)

P r o o f. Let γ ∈ H2
ia, h ∈ H2, and (t, w) ∈ W0. We start with the computation of Dγ and d

dτ

∣∣
τ=0

Dγτ . Of

course, Dγ(t, t + w) = |w|. Let δ̃h(w) := 1
2π (π − |w|)

∥∥∥ḣ∥∥∥−1

L∞
if h 6≡ const and δ̃h(w) := 1 otherwise. Let

w ∈ (−π, π) which gives δ̃h(w) > 0. If now |τ | ≤ δ̃h(w), we obtain L
(
γτ |[t,t+w]

)
≤ 1

2L (γτ ) as in the proof
of Lemma 1.13. This implies (1.15) and (1.16); note that C3-regularity is not necessary here. We conclude, for
any pair (t, w) ∈ R/2πZ× (−π, π),

d
dτ

∣∣
τ=0

Dγτ (t, t+ w) = |w|
∫ 1

0

〈
γ̇(t+ ϑw), ḣ(t+ ϑw)

〉
dϑ.

Applying FUBINI’s Theorem twice, we arrive at

∫∫
Wε

d
dτ

∣∣
τ=0

Dγτ (t, t+ w)

Dγ(t, t+ w)α+1
dw dt =

∫∫
Wε

〈
γ̇(t̄), ḣ(t̄)

〉
|w|α

dw dt̄. (1.21)
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So we obtain (1.20) from (1.19). Now, using (1.6),

I(α)
ε (γ, h)− αQ(α)

ε (γ, h) = −α
∫∫

Wε

〈4γ,4h〉

(
1

|4γ|α+2 −
1

|w|α+2

)
dw dt+

+ 2

∫∫
Wε

〈
γ̇(t), ḣ(t)

〉( 1

|4γ|α
− 1

|w|α
)

dw dt.

The identities 1
|4γ|α −

1
|w|α = α

2
w
|w|αXγ + 1

|w|α−2X
2
γΩ

(α)
γ and 1

|4γ|2 −
1
w2 =

Xγ
w +

X2
γ

1−wXγ yield

〈4γ,4h〉

(
1

|4γ|α+2 −
1

|w|α+2

)

=
〈4γ,4h〉

w2

[ (
α
2 + 1

) w

|w|α
Xγ +

1

|w|α−2X
2
γΩ(α)

γ + α
2

1

|w|α−2X
2
γ +

w

|w|α−2X
3
γΩ(α)

γ

+
X2
γ

1− wXγ

(
α
2

w

|w|α−2Xγ + |w|4−αX2
γΩ(α)

γ +
1

|w|α−2

)]
.

So,

I(α)
ε (γ, h)− αQ(α)

ε (γ, h)

= α

∫∫
Wε

1

|w|α−2 ·
Xγ

w

[〈
γ̇(t), ḣ(t)

〉
−
(
α
2 + 1

) 〈4γ,4h〉
w2

]
dw dt

+ 2

∫∫
Wε

〈
γ̇(t), ḣ(t)

〉 1

|w|α−2X
2
γΩ(α)

γ dw dt (1.22)

− α
∫∫

Wε

〈4γ,4h〉
w2

[
1

|w|α−2X
2
γ

(
Ω(α)
γ + α

2 +
1

1− wXγ

)

+
w

|w|α−2X
3
γ

(
Ω(α)
γ + α

2

1

1− wXγ

)
+ |w|4−α

X4
γ

1− wXγ
Ω(α)
γ

]
dw dt.

By Proposition 1.3, the functional Q(α) = limε↘0Q
(α)
ε is continuous on H2 × H2. We now have to treat the

remaining three terms on the right-hand side of (1.22).
By Corollary 1.5, the operators X , Ω(α), and 1

1−wX are continuous on H2
ia-sequences with respect to the L∞

norm. Moreover we deduce from (1.4)

Xγ(t, w)

w
= 2

∫ 1

0

u(1− u)

〈∫ 1

0

γ̈(t+ uvw) dv, γ̈(t+ uw)

〉
Rd

du

−
∫ 1

0

∫ 1

0

(1− u)(1− v) 〈γ̈(t+ uw), γ̈(t+ vw)〉Rd dudv,

(1.23)

which is obviously (bounded and) continuous on H2, again with respect to the L∞ norm. The same holds true
for

〈4γ,4h〉
w2

=

〈∫ 1

0

γ̇(t+ σw) dσ,

∫ 1

0

ḣ(t+ τw) dτ

〉
Rd
, (1.24)

and
〈
γ̇(t+ ·), ḣ(t+ ·)

〉
on (γ, h) ∈ H2 ×H2. Now

∫ π
−π

dw
|w|α−2 <∞ permits to pass to the limit ε↘ 0 which

concludes the proof.
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Lemma 1.18 The mapping

(γ, h) 7−→
(

2π

L (γ)

)α−2

I(α)

(
2π

L (γ)
(γ, h) ◦ (Ψγ)−1

)
, (1.25)

where Ψγ is taken from Proposition A.6, defines a continuous extension of I(α) to
(
H2

ir ×H2
)

(R/2πZ,Rd).

Remark 1.19 Note that, while I(α) can directly be computed by (1.20) on H2
ia × H2, we cannot use this

formula for H2
ir ×H2, but have to pass to (1.25) instead.

P r o o f. If (γ, h) ∈ C3
ir × C3, the statement follows from Corollary 1.16 (invariance under reparametriza-

tion). Now we consider (γ, h) ∈ H2
ir × H2. By Proposition A.6 and Corollary A.4, the mapping γ 7→

(Ψγ)
−1 ∈ H2

p (0, `), see (A.3), is continuous with respect to the H2 topology as well as γ 7→ L (γ). So

(γ, h) 7→
(

2π
L (γ) (γ, h) ◦ (Ψγ)−1

)
∈ H2

ia ×H2 is continuous with respect to the H2 ×H2 topology. The claim
follows by Lemma 1.17.

Lemma 1.20 (Approximation inH2
ir ×H2) For any γ ∈ H2

ir(R/2πZ,Rd), h ∈ H2(R/2πZ,Rd) there are
sequences (γk)k∈N ⊂ C∞ir , (hk)k∈N ⊂ C∞ converging to γ and h in H2 and some δ1 = δ1(γ, ‖h‖H2) > 0 such
that γk + τhk ∈ C∞ir for all τ ∈ [−δ1, δ1].

P r o o f. Take δγ = δγ(γ) > 0 from Lemma 1.7. Let (γk)k∈N, (hk)k∈N be sequences approximating γ, h in
H2. By dropping some elements (if necessary) we obtain ‖γk − γ‖H2 ≤ 1

3δγ (which implies (γk)k∈N ⊂ C∞ir )

and ‖hk − h‖H2 ≤ 1
3δγ for all k ∈ N. Assuming τ ∈ [−δ1, δ1], where δ1 = δ1(γ, ‖h‖H2) := min

(
1, 1

3δγ ‖h‖
−1
H2

)
if h 6≡ 0 or δ1 := 1 otherwise, we arrive at ‖(γk + τhk)− γ‖H2 ≤ ‖γk − γ‖H2 + δ1 ‖h‖H2 + δ1 ‖hk − h‖H2 ≤
δγ . So γk + τhk belongs to C∞ir for all k ∈ N.

Theorem 1.21 (δE(α) ∈ C0(H2
ir × H2)) Let γ ∈ H2

ir(R/2πZ,Rd), h ∈ H2(R/2πZ,Rd). Then E(α)

is Fréchet differentiable at γ in direction of h, and its differential (first variation) amounts to δE(α)(γ, h) =
I(α)(γ, h). More precisely, the derivative h 7→ δE(α)(γ, h) is linear and continuous on H2 and satisfies

E(α)(γ + h)− E(α)(γ)− δE(α)(γ, h)

‖h‖H2

h→0−−−→ 0.

P r o o f. Let (γk)k∈N , (hk)k∈N ⊂ C∞ be sequences approximating γ ∈ H2
ir and h ∈ H2 as in Lemma 1.20.

This admits to write using Lemma 1.15

E(α)(γk+τhk)−E(α)(γk)
τ = 1

τ

∫ 1

0
d

dϑE
(α)(γk + ϑτhk) dϑ =

∫ 1

0
I(α)(γk + ϑτhk, hk) dϑ.

By Theorem 1.6 and Lemma 1.18 we may pass to the limit k →∞ obtaining

E(α)(γ+τh)−E(α)(γ)
τ =

∫ 1

0
I(α)(γ + ϑτh, h) dϑ,

which tends to δE(α)(γ, h) = I(α)(γ, h) as τ → 0. The integrand on the right-hand side is again majorized
due to Lemma 1.18. The linearity of h 7→ δE(α)(γ, h) is due to (1.20) and (1.25), its continuity follows from
Lemma 1.18. Finally∣∣∣E(α)(γ + h)− E(α)(γ)− δE(α)(γ, h)

∣∣∣
≤ ‖h‖H2

∫ 1

0

∣∣∣I(α)(γ + ϑh, h
‖h‖H2

)− I(α)(γ, h
‖h‖H2

)
∣∣∣dϑ.

The integral vanishes as h→ 0 according to Lemma 1.18, which also yields an integrable majorant.

Copyright line will be provided by the publisher



14 Ph. Reiter: Repulsive Knot Energies and Pseudodifferential Calculus

1.4 Derivative formulae

In this section we state some formulae for the first variation δE(α) and the derivative E(α)′ = H(α) satisfying
δE(α)(γ, h) =

∫ 2π

0

〈
(H(α)γ)(t), h(t)

〉
Rd |γ̇(t)|dt. These results are not required for the next section, so we omit

the proofs, which can be found in [40, § 1.6]. By Cm,βir we denote the subset of Cmir consisting of functions which
have a Hölder continuous m-th derivative with exponent β ∈ (0, 1], i. e.

∣∣f (m)(t+ w)− f (m)(w)
∣∣ ≤ Cf |w|β .

Proposition 1.22 For (γ, h) ∈ H2
ir ×H2, the first variation δE(α)(γ, h) is the limit of∫∫

Dγ (t,t+w)≥L (γ)
2π

ε

{
(α− 2)

〈
γ̇(t)

|γ̇(t)|2
,ḣ(t)

〉
Dγ(t,t+w)α + 2

〈
γ̇(t)

|γ̇(t)|2
,ḣ(t)

〉
|4γ|α − α 〈4γ,4h〉|4γ|α+2

}
|γ̇(t+ w)| |γ̇(t)|dw dt (1.26)

as ε↘ 0. If moreover (γ, h) ∈ C2,1
ir × C2,1, then δE(α)(γ, h) equals

lim
ε↘0

∫∫
Wε

{
(α− 2)

〈
γ̇(t)

|γ̇(t)|2
,ḣ(t)

〉
Dγ(t,t+w)α + 2

〈
γ̇(t)

|γ̇(t)|2
,ḣ(t)

〉
|4γ|α − α 〈4γ,4h〉|4γ|α+2

}
|γ̇(t+ w)| |γ̇(t)|dw dt. (1.27)

Let γ ∈ C3,β
ir , β ∈ (α − 2, 1], λ ∈ H2(R/2πZ). HE [30, Lemma 4.6] provides a nice geometric argument

which also works for α ∈ [2, 3), showing δE(α)(γ, λγ̇) = 0.
Approximating we obtain from the continuous extension of I(α) derived in Lemma 1.18

Corollary 1.23 Let γ ∈ H3
ir(R/2πZ,Rd), λ ∈ H2(R/2πZ). Then δE(α)(γ, λγ̇) = 0.

For the next statement we need the projection operator onto γ̇⊥ given by Pγ̇⊥g := g −
〈
g, γ̇|γ̇|

〉
Rd

γ̇
|γ̇| . Note

that, provided |γ̇| ≡ 1, this definition coincides with the other one given below in (2.5).

Theorem 1.24 Let γ ∈ C3,1
ir (R/2πZ,Rd), h ∈ H2(R/2πZ,Rd). Then δE(α)(γ, h) may be written as

δE(α)(γ, h) =

∫ 2π

0

〈
(H(α)γ)(t), h(t)

〉
Rd
|γ̇(t)|dt, (1.28)

where (H(α)γ)(t) := lim
ε↘0

∫
|w|∈[ε,π]

{
−(α− 2)

1
|γ̇(t)| (

γ̇(t)
|γ̇(t)| )

.

Dγ(t,t+w)α − 2
1
|γ̇(t)| (

γ̇(t)
|γ̇(t)| )

.

|4γ|α + 2α
P
γ̇⊥4γ
|4γ|α+2

}
|γ̇(t+ w)|dw.

Remark 1.25 Equation (1.28) is the starting point for the gradient flow of O’HARA’s energies, i. e. the
solution to the evolution equation d

dτ γ = −H(α)γ. For α = 2, a short-time existence result requiring smooth
initial data was derived in [30, Thm. 2.1]. It was improved in [6] to long-time existence forC2,α-initial data being
close to a local minimizer; after suitable reparametrization the gradient flow converges smoothly to a (possibly
different) local minimizer. A generalization to α ∈ (2, 3) will appear in [7].

2 Smoothness of critical points

We start this section defining the Fourier multiplierMµ and stating some embeddings. Results of this kind are
usually proven by interpolation methods, cf. [27, Sect. 1.3], [51, Sect. 4.2], [52, p. 24], which may even give
stronger results. (E. g., the assertion stated in Lemma 2.6 below also holds true for p = 2

1−2s .) However, proofs
can be given by elementary means, see [40, § 2.1].

We introduce two double sequences,

σm,n :=

√
1 +m2 −

√
1 + n2√

1 + (m− n)2
∈ (−1, 1), τm,n :=

1 + n2

(1 +m2)(1 + (m− n)2)
∈ (0, 2],

where m,n ∈ Z. For β ≥ 1, the first one extends to σ(β)
m,n := (1+m2)β/2−(1+n2)β/2

(1+(m−n)2)β/2(1+n2)(β−1)/2 , which is uniformly

bounded by 2β as follows. By (1 + z)β =
∑∞
k=0

(
β
k

)
zk for |z| ≤ 1 and

(
β
k

)
= O(k−β−1) as k → ∞ we
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derive 0 ≤ (x + y)β − yβ ≤ 2βxmax(x, y)β−1 for x, y ≥ 0. Defining x :=
∣∣√1 +m2 −

√
1 + n2

∣∣ ≥ 0 and
y :=

√
1 + n2 ≥ 1 we arrive at (1 +m2)β/2 − (1 + n2)β/2 ≤ 2β(1 + (m− n)2)β/2(1 + min (m,n)

2
)(β−1)/2.

For the lower bound, we interchange the variables m,n.
Of course, σ(1)

m,n = σm,n.

Theorem 2.1 (Multiplier) Let (µk,l)k,l∈Z ∈ L
∞(Z2,C) be a (uniformly bounded) double sequence satisfying

µk,l = µ−k,−l for all k, l ∈ Z and f, g ∈ L2(R/2πZ). Then

Mµ(f, g) :=
∑
m∈Z

∑
k∈Z

µk,m−kf̂kĝm−kφm (2.1)

defines a bilinear operator with the following properties.

(i) If s > 1
2 and f, g ∈ Hs(R/2πZ), we obtain Mµ(f, g) ∈ Hs(R/2πZ) satisfying 6 ‖Mµ(f, g)‖Hs ≤

Cs ‖µ‖`∞ 6 ‖f‖Hs 6 ‖g‖Hs .

(ii) For any s ≥ 0, ε > 0 and f ∈ Hs(R/2πZ), g ∈ Hs+ 1
2 +ε(R/2πZ) we arrive atMµ(f, g) ∈ Hs(R/2πZ)

and 6 ‖Mµ(f, g)‖Hs ≤ Cs,ε ‖µ‖`∞ 6 ‖f‖Hs 6 ‖g‖Hs+1
2
+ε .

(iii) For any s ≥ 0, ε > 0 and f, g ∈ Hs(R/2πZ) we deduce J−
1
2−εMµ(f, g) ∈ Hs(R/2πZ) and 6∥∥∥J− 1

2−εMµ(f, g)
∥∥∥
Hs
≤ Cs,ε ‖µ‖`∞ 6 ‖f‖Hs 6 ‖g‖Hs .

The statement extends to vector or matrix valued functions f, g as well.

Remark 2.2 Since 6 ‖f‖Hs = 6 ‖Jsf‖L2 for s ≥ 0, we may take this identity as definition for 6 ‖f‖Hs in case
s < 0, such that

6 ‖Mµ(f, g)‖Hs ≤


Cs ‖µ‖`∞ 6 ‖f‖Hs 6 ‖g‖Hs if s > 1

2 ,
Cs,ε‖µ‖`∞ 6 ‖f‖Hs 6 ‖g‖

Hs+
1
2
+ε if s ≥ 0,

Cs,ε‖µ‖`∞ 6 ‖f‖Hs+1
2
+ε 6 ‖g‖Hs+1

2
+ε if s ≥ − 1

2 − ε, ε > 0.

Applying Theorem 2.1 to µk,` ≡ 1 leads toM1(f, g) = fg, which gives

Corollary 2.3 (Hs ·Hs ↪→ Hs)
{
s > 1

2  6 ‖fg‖Hs ≤ Cs 6 ‖f‖Hs 6 ‖g‖Hs ,
s ≥ 0  6 ‖fg‖Hs ≤ Cs,ε 6 ‖f‖Hs 6 ‖g‖Hs+1

2
+ε .

Lemma 2.4 (L1 ↪→ H−1/2−ε) If f ∈ L1(R/2πZ,Rd) and s > 1
2 , the mapping

ϕ 7→
∫ 2π

0

〈f(t), ϕ(t)〉Rd dt

defines a linear form on Hs. Moreover, J−sf ∈ L2 and, for any ϕ ∈ Hs(R/2πZ,Rd),

〈
J−sf, Jsϕ

〉
L2 = −

∫ 2π

0

〈f(t), ϕ(t)〉Rd dt.

Lemma 2.5 (H1/2+ε ↪→ L∞) If f ∈ H1/2+ε(R/2πZ,Rd), ε > 0, one obtains f ∈ L∞(R/2πZ,Rd)
satisfying ‖f‖L∞ ≤ Cε 6 ‖f‖H1/2+ε .

Be aware that H1/2 6↪→ L∞, cf. [51, p. 273], but for s ∈ (0, 1
2 ) we obtain an embedding into Lp spaces as

follows.

Lemma 2.6 (Hs ↪→ L2/(1−2s)−ε) Let s ∈ (0, 1
2 ), f ∈ Hs(R/2πZ,Rd), and p ∈

[
2, 2

1−2s

)
. Then f ∈

Lp(R/2πZ,Rd) and ‖f‖Lp ≤ Cs,p 6 ‖f‖Hs .

The following statement gives a condition which permits to conclude that some Hs function, integrated with
respect to some parameter, still belongs to Hs. Of course, there are many possible generalizations.

Copyright line will be provided by the publisher



16 Ph. Reiter: Repulsive Knot Energies and Pseudodifferential Calculus

Lemma 2.7 (Hs ↪→
∫
Hs) Let d1, d2 ∈ N, s ≥ 0, and Y ⊂ Rd1 , Z ⊂ Rd2 be (Lebesgue) measurable.

Moreover, let f : R/2πZ× Y × Z → R and g : Y × Z → R be measurable functions such that

for a. e. (y, z) ∈ Y × Z : f(·, y, z) ∈ Hs(R/2πZ,Rd), 6 ‖f(·, y, z)‖Hs ≤ g(y, z),
for a. e. y ∈ Y : g(y, ·) ∈ L1(Z), ess supη∈Y ‖g(η, ·)‖L1 < ∞.

Then we obtain F (·, y) :=

∫
Z

f(·, y, z) dz ∈ Hs(R/2πZ,Rd) for a. e. y ∈ Y with

6 ‖F (·, y)‖Hs ≤ ess sup
η∈Y

‖g(η, ·)‖L1 <∞.

2.1 Derivation of the Euler-Lagrange equation

In the sequel we will denote by H2,3
ia (R/2πZ,Rd) those curves γ ∈ H2

ia(R/2πZ,Rd) whose curvature is cube-
integrable, i. e. ‖γ̈‖3L3 =

∫ 2π

0
|γ̈(t)|3 dt <∞. In the same way, H1,3 denotes an H1 function which possesses a

cube-integrable first derivative.
Let γ ∈ H2

ir(R/2πZ,Rd) be a critical point of Ẽ(α) = L α−2E(α), i. e.

δẼ(α)(γ, h) = 0 for all h ∈ C∞(R/2πZ,Rd). (2.2)

Since

δẼ(α)(γ, h) = (α− 2)L (γ)α−3E(α)(γ)δL (γ, h) + L (γ)α−2δE(α)(γ, h),

equation (2.2) is equivalent to

δE(α)(γ, h) = `(α)(γ)

〈(
γ̇

|γ̇|

).
, h

〉
L2

, (2.3)

where `(α)(γ) := 2π · α−2
L (γ)E

(α)(γ) is finite for any γ ∈ H2
ir by Theorem 1.6.

The ansatz via Lagrange multipliers also leads to (2.3) with the multiplier `(α)(γ).

Lemma 2.8 Let γ ∈ H2,3
ia (R/2πZ,Rd) be a critical point of Ẽ(α). Then h 7→ Q(α)(γ, h) continuously

extends to a (linear) functional on H1,3(R/2πZ,Rd).

P r o o f. Revisiting the proof of Lemma 1.17, the functional I(α)(γ, h) − αQ(α)(γ, h), originally defined on
(γ, h) ∈ H2

ia × H2, continuously extends to H2,3
ia × H1,3, for, applying (1.23) and (1.24), the first term on the

right-hand side of (1.22) becomes

α

∫∫
Wε

1

|w|α−2 ·
Xγ

w

[〈
γ̇(t), ḣ(t)

〉
−
(
α
2 + 1

) 〈4γ,4h〉
w2

]
dw dt

= α

∫∫∫∫∫∫
Wε×[0,1]4

1

|w|α−2 ·

(
2u(1− u) 〈γ̈(t+ uvw), γ̈(t+ uw)〉Rd

−(1− u)(1− v) 〈γ̈(t+ uw), γ̈(t+ vw)〉Rd

)
·

·
(〈
γ̇(t), ḣ(t)

〉
−
(
α
2 + 1

) 〈
γ̇(t+ σw), ḣ(t+ τw)

〉
Rd

)
dσ dτ dudv dw dt.

For any (σ, τ, u, v, w) ∈ [0, 1]4 × ([−π, π] \ {0}) the integrand clearly belongs to L1. Its L1 norm is bounded
by 3α(2 + α

2 ) |w|2−α ‖γ̈‖2L3 ‖γ̇‖L∞
∥∥∥ḣ∥∥∥

L3
. Now, by FUBINI’s theorem, the integrand is L1(W0 × [0, 1]4), and

the continuity on h ∈ H1,3 is obvious. The remaining two terms may be treated in the same manner. (Here we
do not need γ̈, ḣ ∈ L3.) Now let h ∈ H1,3(R/2πZ,Rd) be approximated by (hn)n∈N ⊂ C∞(R/2πZ,Rd) with
respect to the H1,3 norm. By the assumptions we deduce

I(α)(γ, hn)
Thm. 1.21

= δE(α)(γ, hn)
(2.3)
= `(α)(γ) 〈γ̈, hn〉L2 . (2.4)
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The right-hand side is linear and continuous even on h ∈ L2, so limn→∞Q(α)(γ, hn) exists and is continuous
on H1,3.

Remark 2.9 Since Q(2) is a continuous functional on H2×H1 according to Proposition 1.3, the information
given in Lemma 2.8 is new only for α > 2.

Before proceeding further, we briefly introduce the orthogonal projection onto γ̇ and γ̇⊥ respectively, which
is given by

Sγ̇ := γ̇ ⊗ γ̇, Pγ̇⊥ := idRd − Sγ̇ = IdRd×d − γ̇ ⊗ γ̇. (2.5)

Here, for any two vectors u, v ∈ Rd, the product u⊗v is defined as the matrix u·v> ∈ Rd×d, where v> denotes the
transpose of v. The corresponding matrix-vector product for w ∈ Rd equals (u⊗ v)w = u(v>w) = 〈v, w〉Rd u.
Both projections are self-adjoint since 〈Sγ̇u, v〉 = 〈u, γ̇〉 〈γ̇, v〉 = 〈u, Sγ̇v〉.

Lemma 2.10 (Orthogonal projection) Let s ≥ 0, γ ∈ Hs+2(R/2πZ,Rd), and g ∈ Hs(R/2πZ,Rd). Then
Sγ̇g, Pγ̇⊥g ∈ Hs(R/2πZ,Rd) and

6 ‖Sγ̇g‖Hs ≤ Cd,s 6 ‖γ̇‖
2
Hs+1 6 ‖g‖Hs , 6

∥∥Pγ̇⊥g∥∥Hs ≤ Cd,s (1+ 6 ‖γ̇‖2Hs+1

)
6 ‖g‖Hs , (2.6)

so Sγ̇g, Pγ̇⊥g are (linear hence) continuous in g.

P r o o f. 6
∥∥Pγ̇⊥g∥∥Hs ≤ 6‖g‖Hs+ 6 ‖Sγ̇g‖Hs Cor. 2.3

≤ 6‖g‖Hs + Cd,s 6 ‖γ̇‖2Hs+1 6 ‖g‖Hs .

Remark 2.11 In case s > 1
2 we only require γ ∈ Hs+1 for the statement of Lemma 2.10 obtaining

6 ‖Sγ̇g‖Hs ≤ Cd,s 6 ‖γ̇‖2Hs 6 ‖g‖Hs , cf. Corollary 2.3 (i). — The projections are also continuous as operators
S•, P•⊥ : Hs+2 → Lin(Hs), γ 7→ Sγ̇ or γ 7→ Pγ̇⊥ , with respect to the corresponding topology.

Lemma 2.12 Let γ ∈ H2,3
ia (R/2πZ,Rd) be a critical point of Ẽ(α) and g ∈ C∞(R/2πZ,Rd). Then h :=

Pγ̇⊥g ∈ H1,3 and there is a (nonlinear) operator

M (α) : H2,3
ia (R/2πZ,Rd)→ L1(R/2πZ,Rd)

satisfying

`(α)(γ) 〈γ̈, h〉L2 − αQ(α)(γ, h) = −
∫ 2π

0

〈
(M (α)γ)(t), h(t)

〉
Rd

dt. (2.7)

P r o o f. Obviously ḣ = (g − 〈g, γ̇〉 γ̇)
.

= ġ − 〈ġ, γ̇〉 γ̇ − 〈g, γ̈〉 γ̇ − 〈g, γ̇〉 γ̈ belongs to L3 since ġ, γ̇ ∈ L∞,
γ̈ ∈ L3. Let ϕ ∈ L1(W0) be 2π-periodic in the first argument and satisfy ϕ(t + w,−w) = ϕ(t, w) on W0 =
[0, 2π]× [−π, π]. By Xγ(t+ w,−w) = −Xγ(t, w), the functions

ϕ1(t, w) :=
1

|w|α−2 ·
Xγ(t, w)

w
and

ϕ2(t, w) :=

[
1

|w|α−2X
2
γ

(
Ω

(α)
γ + α

2 + 1
1−wXγ

)
+ w
|w|α−2X

3
γ

(
Ω

(α)
γ + α

2
1

1−wXγ

)
+

+ |w|4−α
X4
γ

1− wXγ
Ω(α)
γ

]

are admissible in this sense. Using the periodicity of γ and ϕ(·, w), we obtain∫∫
Wε

ϕ(t, w) · 〈γ(t+w)−γ(t),h(t+w)〉
w2 dw dt = −

∫∫
Wε

ϕ(t̄, w̄) · 〈γ(t̄+w̄)−γ(t̄),h(t̄)〉
w̄2 dw̄ dt̄.
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18 Ph. Reiter: Repulsive Knot Energies and Pseudodifferential Calculus

Together with 〈γ(t+ w)− γ(t), h(t)〉Rd = w2
〈∫ 1

0
(1− %)γ̈(t+ %w) d%, h(t)

〉
Rd

on W0 which stems from

〈γ̇, h〉 ≡ 0, we arrive at∫∫
Wε

ϕ(t, w) 〈4γ,4h〉w2 dw dt = −2

∫∫
Wε

ϕ(t, w)

〈∫ 1

0

(1− %)γ̈(t+ %w) d%, h(t)

〉
dw dt.

Transforming the right-hand side of (1.22) for ϕ = ϕ1, ϕ2 and ε ↘ 0 in this manner, deducing from 〈γ̇, h〉 ≡ 0

that
〈
γ̇, ḣ

〉
≡ −〈γ̈, h〉 and recalling (2.4), the left-hand side of (2.7) equals

lim
ε↘0

{
α

∫∫
Wε

1

|w|α−2 ·
Xγ

w

〈
−γ̈(t) + (α+ 2)

∫ 1

0

(1− %)γ̈(t+ %w) d%, h(t)

〉
dw dt

− 2

∫∫
Wε

〈γ̈(t), h(t)〉 1

|w|α−2X
2
γΩ(α)

γ dw dt (2.8)

+ 2α

∫∫
Wε

〈∫ 1

0

(1− %)γ̈(t+ %w) d%, h(t)

〉[
X2
γ

|w|α−2

(
Ω(α)
γ + α

2 +
1

1− wXγ

)

+
w

|w|α−2X
3
γ

(
Ω(α)
γ + α

2

1

1− wXγ

)
+ |w|4−α

X4
γ

1− wXγ
Ω(α)
γ

]
dw dt

}
.

Now let (M (α)γ)(t) :=

2π

{
α

∫ π

−π

1

|w|α−2 ·
Xγ

w

[
−γ̈(t) + (α+ 2)

∫ 1

0

(1− %)γ̈(t+ %w) d%

]
dw

− 2

∫ π

−π
γ̈(t)

1

|w|α−2X
2
γΩ(α)

γ dw (2.9)

+ 2α

∫ π

−π

∫ 1

0

(1− %)γ̈(t+ %w) d%

[
1

|w|α−2X
2
γ

(
Ω(α)
γ + α

2 +
1

1− wXγ

)

+
w

|w|α−2X
3
γ

(
Ω(α)
γ + α

2

1

1− wXγ

)
+ |w|4−α

X4
γ

1− wXγ
Ω(α)
γ

]
dw

}
.

Recalling that the functions Xγ , Ω
(α)
γ , and 1

1−wXγ belong to L∞(W0) by Corollary 1.5 and additionally us-
ing (1.23), we see that for each tuple (%, u, v, w) ∈ [0, 1]3 × [−π, π] \ {0} the integrand on the right-hand
side of (2.9) belongs to L1(R/2πZ) and is bounded by Cα,γ |w|2−α. So, by FUBINI’s theorem, the integrand
is L1(W0 × [0, 1]3) which implies M (α)γ ∈ L1(R/2πZ). Finally, we conclude the proof by writing (2.8) as
−
∫ 2π

0

〈
(M (α)γ)(t), h(t)

〉
Rd dt.

Remark 2.13 Using Corollary 1.5 we can also show the continuity of γ 7→M (α)γ.

Lemma 2.14 (Commutator) Let γ ∈ Hα(R/2πZ,Rd) and µk,` := −σ(α−1)
k+`,` . Then the linear operator

N
(α)
γ : g 7→ Mµ(Jα−1Sγ̇ , J

α−2g) from (2.1) satisfies

(i) γ ∈ Hα, g ∈ Hα−2, ε > 0 =⇒ J−
1
2−εN

(α)
γ g ∈ L2,

(ii) γ ∈ Hα+ 1
2−ε, g ∈ Hα−2+ 1

2−ε, ε ≤ 1
2 =⇒ J−2εN

(α)
γ g ∈ L2,

(iii) γ ∈ Hα+s, g ∈ Hα−2+s, s > 1
2 =⇒ N

(α)
γ g ∈ Hs.

Moreover, N (α)
γ is skew-adjoint, i. e.

〈
N

(α)
γ g, h

〉
L2

= −
〈
g,N

(α)
γ h

〉
L2

for h ∈ H 1
2 +ε, ε > 0. For g ∈ Hα−1

we obtain, using the commutator bracket,

N (α)
γ g = −

[
Jα−1, Sγ̇

]
g =

[
Jα−1, Pγ̇⊥

]
g = Jα−1Pγ̇⊥g − Pγ̇⊥Jα−1g. (2.10)
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P r o o f. Statements (i) – (iii) follow from Theorem 2.1 (i), (iii).

Remark 2.15 As operator N (α) : Hα+s → Lin(Hα−2+s, Hs), γ 7→ N
(α)
γ , the commutator is continuous

with respect to the corresponding topology. The argument is parallel to that given in Remark 2.11.

Recalling (1.9), (1.12), the operator Jα−1 + 1
a(α)L

(α) − `(α)(γ)
αa(α)

d2

dt2 linearly maps Hs+2 to Hs such that

6
∥∥∥∥(Jα−1 +

1

a(α)
L(α) − `(α)(γ)

αa(α)
d2

dt2

)
γ

∥∥∥∥
Hs
≤ C

(
α,E(α)(γ),L (γ)

)
6 ‖γ‖Hs+2 .

Now (2.6) yields
Lemma 2.16 For any s ≥ 0,

γ 7→ R(α)γ := Pγ̇⊥

[(
Jα−1 +

1

a(α)
L(α) − `(α)(γ)

αa(α)
d2

dt2

)
γ

]
defines a (nonlinear) operator Hs+2(R/2πZ,Rd)→ Hs(R/2πZ,Rd) satisfying

6
∥∥∥R(α)γ

∥∥∥
Hs
≤ C

(
1+ 6 ‖γ‖3Hs+2

)
, C = C

(
α, d, s, E(α)(γ),L (γ)

)
.

Remark 2.17 The operator γ 7→ R(α)γ is continuous, cf. Remark 2.11. Recall the continuity of L and E(α)

(Theorem 1.6).
Corollary 2.18 (Weak Euler-Lagrange equation for Ẽ(α)) Let γ ∈ H2,3

ia (R/2πZ,Rd) be a critical point
of Ẽ(α). Then〈

γ̈, Jα−1g
〉
L2 =

〈
R(α)γ, g

〉
L2
−
〈
γ̈, N (α)

γ g
〉
L2

+ 1
αa(α)−

∫ 2π

0

〈(
Pγ̇⊥M

(α)γ
)

(t), g(t)
〉

dt (2.11)

holds for all g ∈ C∞(R/2πZ,Rd).

P r o o f. Let h := Pγ̇⊥g be approximated in H1,3 by (hn)n∈N ⊂ C∞, so (1.9) gives

a(α)
〈
J2γ, Jα−1hn

〉
L2 = Q(α)(γ, hn)−

〈
L(α)γ, hn

〉
L2
. (2.12)

Since the right-hand side continuously extends to h ∈ H1,3 by Proposition 1.3 (ii) and Lemma 2.8, the same
holds true for the left-hand side, so we may pass to the limit n→∞. Using J2γ = γ − γ̈ we obtain

1

a(α)

(
Q(α)(γ, h)−

〈
L(α)γ, h

〉
L2

)
=
〈
J2γ, Jα−1h

〉
L2 =

〈
γ, Jα−1h

〉
L2 −

〈
γ̈, Jα−1h

〉
L2

(2.10)
=
〈
γ, Jα−1Pγ̇⊥g

〉
L2 −

〈
γ̈, N (α)

γ g
〉
L2
−
〈
γ̈, Pγ̇⊥J

α−1g
〉
L2 .

Since |γ̇| ≡ 1 implies Pγ̇⊥ γ̈ = γ̈ and Pγ̇⊥ is self-adjoint , we arrive at〈
γ̈, Jα−1g

〉
L2 =

〈
γ, Jα−1Pγ̇⊥g

〉
L2 −

〈
γ̈, N (α)

γ g
〉
L2

+
1

a(α)

(〈
L(α)γ, Pγ̇⊥g

〉
L2
−Q(α)(γ, Pγ̇⊥g)

)
(2.7)
=
〈
Jα−1γ, Pγ̇⊥g

〉
L2 −

〈
γ̈, N (α)

γ g
〉
L2

+
1

a(α)

〈
L(α)γ, Pγ̇⊥g

〉
L2

+
1

αa(α)
−
∫ 2π

0

〈
(M (α)γ)(t), (Pγ̇⊥g)(t)

〉
Rd

dt− `(α)(γ)

αa(α)

〈
γ̈, Pγ̇⊥g

〉
L2 .

Remark 2.19 For any critical point γ ∈ H2,3
ia (R/2πZ,Rd) of Ẽ(α) the linear form h 7→

〈
J2γ, Jα−1h

〉
L2 =〈

Jα+1γ, h
〉
L2 extends to H1,3 as shown in (2.12). Using theory for fractional Lp-Sobolev spaces, cf. e. g. [52,

Sect. 13.6], we obtain Jα+1γ ∈
(
H1,3

)∗ ∼= H−1,3/2, so γ ∈ Hα,3/2. Unfortunately, we need more integrability,
namely Hα,2

ia ∩H2,3, in order to establish the boot-strapping.
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20 Ph. Reiter: Repulsive Knot Energies and Pseudodifferential Calculus

2.2 The Monster operator

Lemma 2.20 γ ∈ H2
ia(R/2πZ,Rd), γ̈ ∈ L6 =⇒M (α)γ ∈ L2(R/2πZ,Rd).

P r o o f. Denoting the integrands of the three terms on the right-hand side of (2.9) by mi, i = 1, 2, 3, the
function M (α)γ reads

(M (α)γ)(t) = 2π

3∑
j=1

∫ π

−π

mj(γ; t, w)

|w|α−2 dw. (2.13)

Using (1.5) together with FUBINI’s theorem and SCHWARZ’ inequality, we arrive at
∫ 2π

0
|mi(γ; t, w)|2 dt ≤

Cα,βγ max
(

1, ‖γ̈‖18
L2 , ‖γ̈‖6L6

)
uniformly for a. e. w ∈ [−π, π], i. e. the constants do not depend on w. The same

bound applies to ‖γ̈‖6L6 by FUBINI’s theorem and SCHWARZ’ inequality. This is finite provided γ̈ ∈ L6.

Lemma 2.21 γ ∈ H2+s
ia (R/2πZ,Rd), s > 1

2 =⇒M (α)γ ∈ Hs(R/2πZ,Rd).

In the following proof we use the term “f(·, y) ∈ Hs uniformly for a. e. y ∈ Y ” to abbreviate “f(·, y) ∈ Hs

for a. e. y ∈ Y and ess supy∈Y 6 ‖f(·, y)‖Hs <∞”.

P r o o f. Let s > 1
2 and γ ∈ H2+s

ia . Corollary 2.3 implies(
t 7→ f(t, u, v, w) := 2(1− u) 〈γ̇(t+ uw)− γ̇(t), γ̈(t+ uw)〉

− w 〈(1− u)γ̈(t+ uw), (1− v)γ̈(t+ vw)〉
)
∈ Hs(R/2πZ)

uniformly on (u, v, w) ∈ [0, 1]2 × [−π, π], for

6 ‖f(·, u, v, w)‖Hs ≤ Cs
(
6 ‖γ̇‖Hs 6 ‖γ̈‖Hs+ 6 ‖γ̈‖

2
Hs

)
.

Now Lemma 2.7 yields by (1.4), for w ∈ Y := [−π, π], (u, v) ∈ Z := [0, 1]2,

Xγ(·, w) ∈ Hs uniformly for a. e. w ∈ [−π, π]. (2.14)

By Corollary 2.3 and Lemma 2.7 (w ∈ Y := [−π, π], ϑ ∈ Z := [0, 1]), the right-hand side of 0 < βγ≤1 −

wXγ(t, w)=
∣∣∣4γw ∣∣∣2 =

∣∣∣∫ 1

0
γ̇(t+ ϑw) dϑ

∣∣∣2 belongs to H1+s uniformly for a. e. w ∈ [−π, π]. Since there is a

(unique) k ∈ N such that s ≤ k < 1 + s, the quotient rule for Hk functions gives

(1− wXγ(·, w))
−1 ∈ Hk ⊂ Hs uniformly for a. e. w ∈ [−π, π], (2.15)

which of course also holds for (1− µwXγ(·, w))
−1 uniformly for a. e. (µ,w) ∈ [0, 1]× [−π, π]. Since we may

use the usual differentiation rules on Hk, we even obtain (1− µ) (1− µwXγ(t, w))−α/2−2 ∈ Hk uniformly for
a. e. w ∈ [−π, π], µ ∈ [0, 1], so by (1.5) and Lemma 2.7 (w ∈ Y := [−π, π], µ ∈ Z := [0, 1])

Ω(α)
γ (·, w) ∈ Hk ⊂ Hs uniformly for a. e. w ∈ [−π, π]. (2.16)

By (2.14), (2.15), (2.16), and Corollary 2.3, the functions

m̃1(γ; %, t, u, v, w) := α
[
2u(1− u) 〈γ̈(t+ uvw), γ̈(t+ uw)〉Rd

− (1− u)(1− v) 〈γ̈(t+ uw), γ̈(t+ vw)〉Rd
]
·

· [−γ̈(t) + (α+ 2) (1− %)γ̈(t+ %w)] ,

m̃2(γ; t, w) := − 2γ̈(t)X2
γΩ(α)

γ ,
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m̃3(γ; %, t, w) := 2α(1− %)γ̈(t+ %w)

[
X2
γ

(
Ω(α)
γ + α

2 +
1

1− wXγ

)

+ wX3
γ

(
Ω(α)
γ + α

2

1

1− wXγ

)
+

w2X4
γ

1− wXγ
Ω(α)
γ

]
belong to Hs with respect to the variable t. Their Hs norms are bounded uniformly for a. e. (%, u, v, w) ∈
[0, 1]3 × [−π, π]. Using the notation from (2.13) at the beginning of the proof of Lemma 2.20 we ob-
tain m1(γ; t, w) =

∫∫∫
[0,1]3

m̃1(γ; %, t, u, v, w) d%dudv and m3(γ; t, w) =
∫ 1

0
m̃3(γ; %, t, w) d%. Moreover,

m2(γ; ·, w) = m̃2(γ; ·, w) ∈ Hs and, for i = 1, 3, Lemma 2.7 implies mi(γ; ·, w) ∈ Hs, in all three
cases uniformly for a. e. w ∈ [−π, π]. Finally, the right-hand side of (2.13) belongs to Hs by Lemma 2.7
(w ∈ Z := [−π, π]) and

∫ π
−π |w|

2−α
dw <∞.

If γ ∈ H2 the operator Pγ̇⊥ maps L1(R/2πZ,Rd) to itself, which gives, together with (2.6) and Lemma 2.6

Corollary 2.22


(i) If γ ∈ H2,3

ia (R/2πZ,Rd) then Pγ̇⊥M (α)γ ∈ L1(R/2πZ,Rd).

(ii) If γ ∈ H2+s
ia (R/2πZ,Rd) and s > 1

3 then Pγ̇⊥M (α)γ ∈ L2(R/2πZ,Rd).

(iii) If γ ∈ H2+s
ia (R/2πZ,Rd) and s > 1

2 then Pγ̇⊥M (α)γ ∈ Hs(R/2πZ,Rd).

2.3 Bootstrapping argument

Theorem 2.23 (Regularity of Ẽ(α)-critical points) Any critical point γ ∈ Hα
ia (R/2πZ, Rd) of Ẽ(α) with

cube-integrable curvature is C∞-smooth.
Remark 2.24 If α > 2 + 1

6 any Hα
ia curve has already a cube-integral curvature by Lemma 2.6. (In fact, this

is also true for α = 2 + 1
6 .)

Proof of Theorem 2.23. Applying Lemma 2.14 (N (α)
γ skew-adjoint), Corollary 2.22 (i), and Lemma 2.4 to

Equation (2.11) the term
〈
γ̈, Jα−1g

〉
L2 equals〈

R(α)γ, g
〉
L2

+
〈
J−

1
2−εN (α)

γ γ̈, J
1
2 +εg

〉
L2

+
1

αa(α)

〈
J−

1
2−εPγ̇⊥M

(α)γ, J
1
2 +εg

〉
L2

for any ε > 0. We test this identity using L2 basis elements gj,n := ejφn, j ∈ {1, . . . , d}, n ∈ Z, where
ej denotes the j-th unit vector in Rd. Their m-th Fourier coefficient obviously amounts to ĝj,nm = δn,mej .

Dividing by (1 +m2)
1
4 + 1

2 ε, the Fourier coefficient
(
J (α−2)+( 1

2−ε)γ̈
)
m̂

reads(
J−

1
2−εR(α)γ

)
m̂

+
(
J−

1
2−εN (α)

γ γ̈
)
m̂

+
1

αa(α)

(
J−

1
2−εPγ̇⊥M

(α)γ
)
m̂
. (2.17)

By Lemmata 2.16, 2.14 (i) and Corollary 2.22 (i) applied to Lemma 2.4, Equation (2.17) is `2 summable provided
ε ∈ (0, 1

2 ]. Multiplying by φm and taking the sum over m ∈ Z, we arrive at

J (α−2)+( 1
2−ε)γ̈ = J−

1
2−εR(α)γ + J−

1
2−εN (α)

γ γ̈ +
1

αa(α)
J−

1
2−εPγ̇⊥M

(α)γ ∈ L2. (2.18)

This yields γ ∈ Hα+ 1
2−ε. By Lemmata 2.16, 2.14 (ii), and Corollary 2.22 (ii) the right hand side of (2.18) is

H
1
2−ε provided ε ∈ (0, 1

6 ), so

J (α−2)+(1−2ε)γ̈ = J−2εR(α)γ + J−2εN (α)
γ γ̈ +

1

αa(α)
J−2εPγ̇⊥M

(α)γ ∈ L2. (2.19)

This yields γ ∈ Hα+1−2ε. By Lemmata 2.16, 2.14 (iii), and Corollary 2.22 (iii) the right hand side of (2.19) is
H1 provided ε ∈ (0, 1

6 ), so

Jα−1γ̈ = R(α)γ +N (α)
γ γ̈ +

1

αa(α)
Pγ̇⊥M

(α)γ. (2.20)

If now γ ∈ Hα+s for any s > 1
2 , then by the same arguments the right-hand side of (2.20) belongs to Hs, such

that γ ∈ Hα+s+1. This gives the bootstrapping.
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A Arc-length reparametrization preservesH2 convergence

The appendix contains the proof of
Theorem A.1 The (rescaling and) reparametrizing operator

˜ : H2
ir(R/`Z,Rd) −→ H2

ia(R/`Z,Rd),
γ 7−→ `

L (γ) γ ◦ ψ
−1
γ ,

is continuous with respect to the H2 topology, where ψγ(t) := `
L (γ)L (γ|[0,t]).

In the sequel we need the change-of-variables rule [41, p. 156 top] for Lebesgue measurable functions f and
absolutely continuous monotone g : [a, b]→ R. If one side of∫ g(b)

g(a)

f(t) dt =

∫ b

a

f(g(τ))ġ(τ) dτ (A.1)

exists and is finite, then the same holds true for the other side, and the equation holds. By AC([a, b]) we denote
the set of absolutely continuous functions [a, b]→ R. Recall AC([a, b]) = H1,1(a, b).

Lemma A.2 Let I = (a, b), f ∈ L2(I). Furthermore, let (uk)k∈N be a sequence of absolutely continuous
functions uk : Ī → Ī satisfying u̇k ≥ c > 0 for all k ∈ N and (uniformly) converging to idĪ in C0(Ī). Then
f ◦ uk → f in L2(I).

P r o o f. Let f be approximated by a sequence (fj)j∈N ⊂ C
∞ with ‖fj − f‖L2 → 0 as j →∞. Substituting

t := uk(τ) we infer from (A.1)∫ b

a

|f(uk(τ))− fj(uk(τ))|2 dτ ≤ 1

c

∫ uk(b)

uk(a)

|f(t)− fj(t)|2 dt

which gives

‖f ◦ uk − f‖L2 ≤ ‖f ◦ uk − fj ◦ uk‖L2 + ‖fj ◦ uk − fj‖L2 + ‖fj − f‖L2

≤
(

1√
c

+ 1

)
‖fj − f‖L2 +

√
b− a ‖fj ◦ uk − fj‖L∞ .

For fixed j, uniform convergence of (uk)k∈N implies ‖fj ◦ uk − fj‖L∞ → 0 as k →∞ which yields

lim sup
k→∞

‖f ◦ uk − f‖L2 ≤
(

1√
c

+ 1

)
‖fj − f‖L2 .

Now we may pass to the limit j →∞, and the right-hand side vanishes by assumption.

Next, we define H2
e (0, `) :=

{
ψ ∈ H2(0, `)

∣∣∣ ψ̇ > 0 on [0, `], ψ(0) = 0, ψ(`) = `
}

, the class of strictly in-

creasing Sobolev functions keeping the endpoints fixed. Note that inf [0,`] ψ̇ > 0 for each ψ ∈ H2
e (0, `).

Theorem A.3 The inversion operator −1 : H2
e (0, `) → H2

e (0, `) is well-defined and continuous. Further-
more, for any ψ ∈ H2

e (0, `),

(
ψ−1

)
˙ =

1

ψ̇ ◦ ψ−1
,

(
ψ−1

)̈
= − ψ̈ ◦ ψ−1

(ψ̇ ◦ ψ−1)3
a. e. (A.2)

P r o o f. Changing ψ ∈ H2(0, `) on a measure-zero set we obtain a C1([0, `]) function which possesses an
inverse φ := ψ−1 ∈ C1([0, `]) satisfying φ̇ = 1

ψ̇◦φ ≥
1

‖ψ̇‖
L∞(0,`)

> 0. Since ψ̇ ◦ φ ∈ H1(0, `) with weak

derivative (ψ̇ ◦ φ)̇ = (ψ̈ ◦ φ)φ̇ a. e. and r : [c,∞)→ (0, 1
c ], t 7→ t−1 is Lipschitz, we conclude φ̇ = r ◦ ψ̇ ◦ φ ∈

H1(0, `) according to [53, Thm. 2.1.11]. This implies φ ∈ H2(0, `) with weak derivative φ̈ = − ψ̈◦φ
(ψ̇◦φ)3

a. e. Now
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we consider a sequence (ψn)n∈N∪{0} inH2
e (0, `), ψn → ψ0 inH2(0, `). So we may assume ψ̇n ≥ c for some c >

0 and all n ∈ N∪ {0}. We have to show ‖φk − φ0‖C0([0,`]) +
∥∥∥φ̇k − φ̇0

∥∥∥
C0([0,`])

+
∥∥∥φ̈k − φ̈0

∥∥∥
L2(0,`)

→ 0. The

essential part is to decompose
∥∥∥ψ̈k ◦ φk − ψ̈0 ◦ φ0

∥∥∥
L2(0,`)

≤
∥∥∥ψ̈k ◦ φk − ψ̈0 ◦ φk

∥∥∥
L2

+
∥∥∥ψ̈0 ◦ φk − ψ̈0 ◦ φ0

∥∥∥
L2

.

Applying (A.1) to t = ψk(τ) we arrive at∫ `

0

∣∣∣ψ̈k(φk(t))− ψ̈0(φk(t))
∣∣∣2 dt ≤

∥∥∥ψ̇k∥∥∥
C0([0,`])

∥∥∥ψ̈k − ψ̈0

∥∥∥2

L2(0,`)

k→∞−−−−→ 0,∫ `

0

∣∣∣ψ̈0(φk(t))− ψ̈0(φ0(t))
∣∣∣2 dt ≤

∥∥∥ψ̇k∥∥∥
C0([0,`])

∥∥∥ψ̈0 ◦ (φ0 ◦ ψk)− ψ̈0

∥∥∥2

L2(0,`)
.

Due to the convergence supk∈N

∥∥∥ψ̇k∥∥∥
C0([0,`])

is finite. The functions f := ψ̈0 and uk := φ0 ◦ ψk satisfy the

conditions of Lemma A.2, which implies
∥∥∥φ̈k − φ̈0

∥∥∥
L2
→ 0.

Applying (A.2) to the class of Sobolev functions reparametrizing a periodic function

H2
p (0, `) :=

{
ψ ∈ H2(0, `)

∣∣∣ ψ̇ > 0 on [0, `], ψ(0) = 0, ψ(`) = `, ψ̇(0) = ψ̇(`)
}
⊂ H2

e (0, `) (A.3)

we obtain

Corollary A.4 The restriction of the inversion operator −1 toH2
p (0, `) is a continuous mapping ontoH2

p (0, `).

Theorem A.5 The composition operator

H2
p (0, `)×H2(R/`Z,Rd) −→ H2(R/`Z,Rd),

(ψ, h) 7−→ h ◦ ψ,

is well-defined and continuous. Moreover,

(h ◦ ψ)̇ = (ḣ ◦ ψ)ψ̇, (h ◦ ψ)̈ = (ḧ ◦ ψ)ψ̇2 + (ḣ ◦ ψ)ψ̈ a. e. (A.4)

P r o o f. Since H2(R/`Z,Rd) ⊂ H2((0, `),Rd) we may first interpret h ◦ ψ as a function from (0, `) to Rd,
which, by embeddings H2

p (0, `) ×H2((0, `),Rd) ↪→ C1([0, `]) × C1([0, `],Rd), belongs to C1([0, `],Rd) and
satisfies the first equation in (A.4).

Furthermore, since ψ is a C1-diffeomorphism, ḣ◦ψ ∈ H1((0, `),Rd) and (ḣ◦ψ)̇ = (ḧ◦ψ)ψ̇. From ψ̇ ∈ H1

we deduce (h ◦ ψ)̇ = (ḣ ◦ ψ)ψ̇ ∈ H1((0, `),Rd) and the second equation in (A.4) follows.
Now (h ◦ψ)(0) = h(0) = h(`) = (h ◦ψ)(`) and (h ◦ψ)̇(0) = ḣ(ψ(0))ψ̇(0) = ḣ(0)ψ̇(0) = (h ◦ψ)̇(`) imply

that the periodic extension of h◦ψ to R belongs toH2(R/`Z,Rd). Using the technique from the preceding proof
of Theorem A.3, we may showH2 convergence for any sequence (hk, ψk)k∈N∪{0} inH2

p (0, `)×H2(R/`Z,Rd),
(hk, ψk)→ (h0, ψ0).

Proposition A.6 The reparametrization operator

Ψ : H2
ir(R/`Z,Rd) −→ H2

p (0, `),

γ 7−→
(
t 7→ `

L (γ)

∫ t
0
|γ̇(τ)|dτ

)
,

is continuous.

P r o o f. Let (γk)k∈N∪{0} be a sequence of H2
ir(R/`Z,Rd) curves, γk → γ0 in H2. Due to the convergence

there is some c > 0 such that |γ̇k| ≥ c > 0 for all k ∈ N ∪ {0}. The functions ψk := Ψγk are clearly C1

with ψ̇k(t) = `
L (γk) |γ̇k(t)| , which is absolutely continuous by [53, Thm. 2.1.11] since r : Rd → [0,∞),

x 7→ |x|, is Lipschitz, and we obtain ψ̈k(t) = `
L (γk) ·

〈γ̈k(t),γ̇k(t)〉
|γ̇k(t)| . Thus ψk ∈ H2(0, `), even ψk ∈ H2

p (0, `),
and ‖ψk − ψ0‖H2 → 0.
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By Theorem A.3 the sequence of inverses φk := ψ−1
k also converges in H2.

Now we have collected all tools required for the

P r o o f o f T h e o r e m A.1. By Proposition A.6, the mapping γ 7→ Ψγ ∈ H2
p (0, `) is continuous, hence,

by Corollary A.4, the same holds true for γ 7→ (Ψγ)
−1 ∈ H2

p (0, `). Theorem A.5 yields the continuity of
γ ◦ (Ψγ)

−1 ∈ H2(R/`Z,Rd). Of course, γ ◦ (Ψγ)
−1 is injective and parametrized by constant velocity, for

∣∣∣(γ ◦ (Ψγ)
−1
)

˙
∣∣∣ (A.4)

=
∣∣∣(γ̇ ◦ (Ψγ)

−1
)(

(Ψγ)
−1
)

˙
∣∣∣ (A.2)

=

∣∣∣∣∣ γ̇ ◦ (Ψγ)
−1

(Ψγ)˙◦ (Ψγ)
−1

∣∣∣∣∣ =
L (γ)

`
.

Now the continuity of the length functional implies the desired.
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[45] P. Strzelecki, M. Szumańska, and H. von der Mosel. A geometric curvature double integral of Menger type for space

curves. Ann. Acad. Sci. Fenn. Math., 34(1):195–214, 2009.
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